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Background

e ML application constantly increasing
— e.9g., by 2020 >50% Intel servers will run ML (D. Bryant, Intel SVP)

e Rising Interest in DB research for ML

— e.9., query optimization for feature selection / evaluation [Zhang+14,
Kumar+15,16], ML on factorized DB [Schleich+16]

— DEEM workshop on Data Management for End-to-End ML
— Dagstuhl Presp. Workshop 161571 Research Directions for PDM

e Feature Engineering (FE) critical for quality
— Yet heavy resource consumer in ML development
— Tooling and principles |Guyon+06 book|

— Standard practice; here to stay!

= Deep Learning avoids FE; applicable in certain areas / domains
w/ massive training data available
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Classic ML Classification Flow
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Framework Goal

e DB “understands” how entities become features
— Relational structure, constraints, gueries

e Can be used for assisting FE?

— Estimate feature quality”

— 3Suggest new features?

— Test for suitability of a feature language”

— Detect engineering faults”

— Implication of underlying languages on computational complexity”?
— Benefit from decades of DB theory”

e Sctup for attacking questions
e Step towards DB theory for ML engineering
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Scope

e ML task: binary classification
— Learn a mapping entity — +1/-1

e Boolean features
— Simplifies the framework

— Common in practice
" c.g., binning / bucketing

e Hence, a classifier has the form
C:{+1,-1}» —» {+1,-1}
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TxnInfo Card
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Formal Setup

e [Nty schema: (S,n)
— S is a relational schema (signature, constraints)
- nis aunary relation in S, representing entities

e Aninstance I of S defines:
— An entity set n! (the n relation of 1)
— Information on the entities (all other relations)

e —cature guery: unary query Q over S
o Statistic: series II=(Q4,...,Q,,) oOf feature queries
e Fach een! has a feature vector ll(e) = (f,,...f,)

£ +1 ife € Q;(I)
-1 ife ¢ Qi(D
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(txn in owner’s state) | Qq(x) «— Txnlnfo(x, n, ¢, s), Card(n, ¢, s)
(txn in owner's country)| Qy(x) «— TxnInfo(x, n, ¢, s), Card(n, d, s)
(txn in NY)| Qg(x) «— TxnInfo(x, n, ¢, 'NY")

Feature gueries
Statistio: MI=(Q4,Q,,Q3)



Training

o | ct (S,n) be an entity schema

o Atraining instance is a pair (I,A) where
- Iis an instance over S
- :n'— {+1,-1} is a labeling function

e (I,A) + statistic IT define the training collection
T={{Il(e)A(e)) |e€n'}

e [raining finds a classifier from a hypothesis class H
oy minimizing a risk function over T
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Problem 1: Separability

The naive "noise-free” training from ML textbooks:
IS Tull separation possible?

(H,QL)-separablity
Given a training instance (I,A) over a schema (S,n),

S there any statistic IT in QL such that (I,A) can be
perfectly realized by a classifier in H?
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Redundancy / Identifiablity
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e | inear column dependence in the feature matrix
often means redundant features
— e.9., linear/logistic classification/regression

e ML libraries often require full column rank
— For their optimization solution to be “identifiable”
— ¢.f. "“Theory of Point Estimation” [LenmannCasella83]
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Problem 2: Identifiability

QL-identifiability
Given a statistic IT in QL over entity schema (S,n),

S there any instance I with a column-independent
feature matrix”?
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Two variants:
* Linear independence (arises in, e.g., least-sguare minimization)
» Affine independence (arises in, e.g., entropy minimization)
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Vapnik-Chervonenkis (VC) Dimension

o Vhat is the max #entities that can be shattered
— That is, perfectly classified on every possible labeling”?
/0 @ o @ o @ o
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e Complexity measure for leamability
— (not the only one)

e Estimate training amount to avoid overfitting



Problem 3: Dimensionality

(H,QL)-dimensionality
Given a statistic IT in QL over an entity schema (S,n),

what 1S the max m such that some instance with m
entities can be shattered by H?
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Scope of Results

e Complexity analysis in a specific setting:
— Hypothesis class H = Lin: linear classifiers

— Query language QL = CQ: conjunctive queries
= Vithout constants

— No schema constraints
e Mostly intractable complexity classes (expected)
e Baseline & justification for future assumptions

e Next, a few highlights



(Lin,CQ)-Separability So®

Given a training instance (I,A) over a schema (S,n),
s there any statistic IT in CQ such that (I,A) can be
perfectly realized by a classifier in Lin®

e Cvery training instance Is separable, unless entities
with different labels are indistinguishable by CQs

— That is, there are e and e' with A(e)#A(e") and
endomorphism that maps e and e' and vice versa

— Relationship to CQ-query-by-example
= [Willard10,tenCateDalmaut5,BarceloRomero16]
— coNP-complete

e Avoiding self joins — harder: 25 -complete!



CQ-Identifiability .

Given a statistic IT in CQ over entity schema (S,n),
s there any instance I with a column-independent
feature matrix”

e [he following are equivalent if CQs are connected:
— IT is linearly identifiable
— I is affinely identifiable
— I is non-redundant (N0 equivalent feature queries)

e Pairwise eguivalences break If:
— CQs can be disconnected
— CQs can have negation

e (Seneralized characterization for disconnected CQs
e coNP-complete



(Lin,CQ)-Dimensionality SN B

Given a statistic IT in CQ over entity schema (S,n),
what Is the max m such that some instance with m
entities can be shattered by Lin?

e For connected CQs VC dimw.r.t. IIis d+1

d = #(equivalence classes among CQs in M)

— In particular, containment among CQs does not reduce the VO
dimension compared to vanilla linear classification

e Can go down if we allow:
— Disconnected CQs
— Negation
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Directions for Future Research

Schema constraints

(3eneralized features / tasks
— Numeric, aggregate, multi-labe

Realistic variants of separabili

Y

— Approximate/noisy, incrementa

Restrict model complexity

, regression

— Small/shallow feature gqueries, low statistic dimension

Connection to prob. DBs (statistical guarantees?)

Context of text analysis

— Doc. spanners [Fagin+2014], DeepDive |[Shin+2019]



Summary

® Framework for classifier engineering over DBs
— Entity schema, feature query, statistic, training instance

e (Goal: DB smartness (schema, constraints, queries)
to aid feature engineering

e |[lustrated on several computational problems
— Separabillity, dimensionality, identifiability
— Preliminary results for linear classifiers and CQs

e Plethora of problems / directions to pursue

Thank you! Questions?



