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Enumerating Graph Cliques

e Many apps of (max) cligue enumeration
— Genome-data analysis [Harley+ 01]
— Protein-data analysis [Mohseni-Zadeh+ 04]
— Frequent pattern mining [Koch 01]
— Sensor-network management [Biswas+ 13]
— Financial analysis [Boginski+ 05]

— Social network analysis [Wasserman,Faust 94] [Palla+ 05]
[Yan,Gregory 09]

® | ong continuum of research on algorithms
— [Bron,Kerbosch 73] [Johnson+ 88] [Makino,Uno 04]
[Tomita+ 06] [Conte+ 16/17] ...

e MCs enumerable w/ poly delay, linear space



Sometimes almost Cliques

e Maximal cligues often overly restrictive
— Not all pairs are friends, missing links, ...

e Relaxations proposed; e.qg., kK-plex [Seidman,Foster 78]
— Def: clique, but each v may miss k edges

— Studied in social-network analysis
Pattillo 11,13] [Balasundaram+ 11]

— Poly delay for every fixed k [Berlowitz,Cohen,K 15]

— Incremental FPT & “Intractable” if k is input ; reduce

from hypergraph-transversals (long-standing open)
[Eiter,Gottlob 95,03,13] [Khachiyan+ 06]

— Development in scalable algorithms [Conte+ 17,18]
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This Talk

2 apps of cligue enumeration & counting in
database management:

= Reasoning about inconsistency
= Query planning
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Inconsistency in the DBpedia KB

Marion Jones

ldbo:helght

= 1.524
= 1.778

dbo:birthYear

1969 <

Cullen Douglas

ldbo:birthPIace

» dbr:California
» dbr:Florida

dbo:parent

lrene Tedrow

ldbo:deathPIace

= dor:California
= dbr:Hollywood,_Los_Angeles
= dbr:New_York_City

v dbo-birthYear

dbo:parent

Melinda Saxe ' > 1965




Sources of Inconsistent Data

* |mprecise data sources
— Crowd, Web pages, social encyclopedias, sensors, ...

* |mprecise data generation
— ETL, natural-language processing, sensor/signal
processing, image recognition, ...

e Conflicts in data integration

— Crowd + enterprise data + KB + Web + ... |
e Data staleness = ==
— Entities change address, status, ... N/
e And soon... \em@?““
Ve
—



Principled Declarative Approaches

e Several principled approaches proposed for
reasoning about inconsistent data

e (Concepts in declarative approaches

— Integrity constraints
= Or dependencies

— Inconsistent database
= \/iolates the constraints

— Edit operations
» Delete/insert tuple, update an attribute

— Repairs
» Consistent DB following a legitimate edit

¢ [heoretical formulation [Arenas,Bertossi,Chomicki 99]



Examples of Integrity Constraints

e Key constraints
— Person(ssn,name,birthCity,birthState)

e Functional Dependencies (FDs)
- birthCity — birthState

e Conditional FDs

— birthCity — birthState whenever country="USA”

* Denial constraints
- not[ Parent(x,y) & Parent(y,x) |

e Referential (foreign-key) constraints
- Parent(x,y) — Person(x) & Person(y)



Example: Inconsistent Database

person — birthCity

birthCity — birthState
person | birthCity | birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA




person | birthCity | birthState person | birthCity | birthState
Z TP Subset # T
Douglas ! Miami ! FL Repairs Douglas Miami FL
T8, 85 88, Tedrow LA | CA
edrow | LA | NYC P24 57
T, 080807 Jones LA CA
Set-minimal . . Cardinality-minimal
(for deletion) person — birthCity (for deletion)
birthCity — birthState

person | birthCity | birthState

Douglas LA CA

Douglas Miami FL

Tedrow LA CA

Tedrow LA NYC
Set-minimal Jones LA CA Cardinality-minimal
(for attribute update) (for attribute update)
person | birthCity | birthState person | birthCity | birthState
Douglas Miami CA Douglas Miami FL
Douglas Miami CA Douglas Miami FL
Tedrow | LA Nye | Update o0 T A CA
Tedrow | LA NYC Repairs | Tegrow | LA CA
Jones LA NYC Jones LA CA




Reasoning about Database Inconsistency

e Repairing / Cleaning
— Compute a (good/best) repair
— [Bertossi+ 08] [Kolahi,Lakshmanan 09] [Livshits,K,Roy 18]

e Consistent Query Answering (CQA)
— Which query answers are not affected by inconsistency?
— Formally, find the tuples that belong to Q(]) for all repairs ]
— [Arenas+ 99] [Fuxman,Miller 05] [Koutris,Wijsen 17]

e Repair checking
— Givenl and ], is ] arepair of I? ; typically a complexity tool
— [Afrati,Kolaitis 09] [Chomicki,Marcinkowski 05]

e Repair counting (+enumeration)
— Measure consistency of query answers [Maslowski,Wijsen 14]
— Measure inconsistency [Livshits,K 17] ; also studied in the KR
community [DeBona,Grant,Hunter,Konieczny AAAI1 8]



Conditional

Key Functional Referential = onal

Constraints unctiona
Tuple Tuple Attribute

Operations delete insert update

Set Cardinality
Repairs minimal minimal

Cleaning AElgll CQA Repair

Problem Checking Counting




[ Key M Functional } Rwal [Condfyonal}
Constraints Functional

Tuple Tuple AX{te

Operations delete insert d
Set Cardinality
Repairs minimal minimal
Cleaning Repa_lr CQA Rep?'r

Problem Checking Counting

Douglas | LA | CA Douglas | Miami | FL

“consistency graph” Tedrow | LA | NYC d edge = consistent




[ Key M Functional} RNaI [
Constraints

Conditional
Functional

1

Tuple Tuple %
Operations delete insert d

Set Cardinality
Repairs minimal minimal

Repair

Checking CQA

Cleaning
Problem

Repair
Counting

Max Clique
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Constraints Functional

Tuple Tuple %
Operations delete insert d

Set Cardinality
Repairs minimal minimal
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[ Key M Functional } Rwal [Condfyonal}
Constraints Functional

Tuple Tuple A}g@
Operations delete insert d

Set Cardinality
Repairs minimal minimal

———————————————————————————

i Repair .~ Repair
Problem cleaning Checking He Counting
. #max

cliques

___________________________



Counting Set-Minimal Repairs

e (Counting the maximal cliques of a graph is #P-complete
[Provan,Ball 83], Inapproximable [Hastad 96]

e Special tractable cases, e.g., P,-free graphs
- P,-free graph (a.k.a. cograph): no induced path of length 4

e |WVhat about the consistency graphs? QO—Q

THEOREM [Livshits,K PODS’17]

Equivalent for every fixed set of FDs: Not Py-free
1. Repairs can be counted in poly time Oo—Q
2. Every consistency graph is P,-free
P,-free
Moreover, testable in poly time (given FDs) O—

* Assuming P # #P
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Join Query

Artist (x)
Artist

Etsy

Friends(x,,y,), School(x,,s), School(y,,s)

Friend from the same high school
Colleagues(x,,v,) , Univ(x,,u), Univ(y,,u)

R(X,Y) D]AS(XZ) MXT(Y,2) m Colleague from the same university

Married(x;,y5) , Parent(x;,c) , Parent(y,,c)
ﬂ Spouse with a common child

Same x: Same(a,b)

Artist(x),
n Friends(x,,y,), School(x,,s) , School(y,,s),

m Colleagues(x,,v,) , Univ(x,,u), Univ(y,,u),
I Married(x,,y5) , Parent(xs,c) , Parent(ys,c),
Same(x,x,), Same(x,x,) , Same(x,x)
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Join Algorithms

e (Classic algorithms select a join ordering with
“easier” intermediate joins [Selinger+ 79]

e Yannakakis [1981] for acyclic queries
— And cyclic queries with low hypertree width

e New breed of joiners: worst-case optimal
— [Ngo,Porat,Ré,Rudra 12]
— Meet the Atserias-Grohe-Marx [2008] bound
= Example: R(X,Y) DI S(X,2) > T(Y,Z) — n?vsnl®
— In-memory, scan all relations simultaneously

— NPRR [2012], Leapfrog Trie Join [Veldhuizen 14|, Minesweeper
INgo+ 14], DunceCap [Tu,Ré 15], ...



duration (seconds)

900
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—system hc

Ib/llftj ——
Ib/ms —<—
virtuoso —x—
psql
monetdb ——
neo4j ——
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1 lg_Lléngn
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R(X,Y) D<I S(X,Z) b< T(V,2)
on Livedournal

Join Processing for Graph Patterns:
An Old Dog with New Tricks [Nguyen+ 15]



Leapfrog Trie Join (LFT]) [Veldhuizen 14]

e \ariant of variable elimination No memory used

e Relations in trie structures beyond tries
— Level = attribute / variable
— Tuple = root-to-leaf path

e Multiple trie pointers aligned using a leap-frog
(jJump competition) scan; backtracking

Married(x,y) @B1) || (WBY) | (BLS) Univ(y,u)
A B T A | U
B | ¢ RN TN g) B | U
- S X[gA B C A B C |y S
1 \ C AN YA c s

vy =B D E U UV S |u



Caching n LFTJ [Kalinsky,Etsion, K 17]

Artist(x),
Friends(x,,v,), School(x,,s), School(y,,s),
Colleagues(x,,v,) , Univ(x,,u), Univ(y,,u),

Married(x,,v5) , Parent(x,,c) , Parent(y,,c),

Same(x,x,), Same(x,%,) , Same(x,x,)

@ Tree

decomposition
Y1 S /

Y2 Y3




Caching n LFTJ [Kalinsky,Etsion, K 17]

1]y, | A K K « Caching (unlike LFTJ)

2|s | B o e « Flexible caching (unlike ord. TD)
3 X4 C M M ) >

4 x | D N N Vi S

5 X, E 0] E

6 U _ F e o o P

71y, G— Q

8 | x; | H H [ H [

71 Vs R

10 C - ]

In [Kalinsky,Etsion,K 17]:
» Caching policies

D selection

« Extension to count(join)



Experimental Evaluation
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TD Selection Matters!

Mouvize
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Tree Decomposition (TD) ”V

4""-_-

————’

Each edge contained

_ in some box (bag)
Graph G |77 === ——

Each node
induces a
connected

subtree

Definition: Tree Decomposition (ITD) of a Graph G
(t,8), t atree, B a mapping nodes(t)—2n0des(@) where:
1. For all e € edges(G) there is u € nodes(t) s.t. e € f(u)

2. For all venodes(G), the set {u€nodes(t) |[veB(u)}
iInduces a connected subtree of t




Standard Goodness Measures

r

“HQ
_9gegLgE.

width=2 fill-in=4

1D width: max(|bag])-1
TD fill-in: #new edges needed to connect bag neighbors

Definition: Tree Decomposition (ITD) of a Graph G
(t,8), t atree, B a mapping nodes(t)—2n0des(@) where:
1. For all e € edges(G) there is u € nodes(t) s.t. e € f(u)

2. For all venodes(G), the set {u€nodes(t) |[veB(u)}
iInduces a connected subtree of t




Running Example: Width/Fill-in

Artist(x), ( 1)
VA S
Friends(x,,y,) , School(x,,s) , School(y,,s), N\
X
Colleagues(x,,v,) , Univ(x,,u), Univ(y,,u), \- IjL /
Married(xs,y,) , Parent(x,,c) , Parent(y,,c), -
1

Same(x,x,), Same(x,%,) , Same(x,x,) I
1 2 3 / . \
% ) ™ (i)
Y1\ S :> - / ~ p \ N
u X
x,| chordal / N~ /S i -~
triangulated L e

PRI \ width = 2
u X, X, C
N\ fill-in=10

Y2 Y3




Goodness Criteria in Cached LFT]

[Kalinsky,Etsion,K 17]

e Cardinality of adhesions (intersections)
— This is the dimension of our caches
— Smaller = better

e \\Vidth, #bags (#caches)
— Smaller width = better; higher #bags = better

e Skew
— How effective are the caches?
— Note: Data (not just query) property

— Known effectiveness estimators for variable orderings
(Chu,Balazinska,Suciu 15]




Finding a Good TD (Query Planning)

e How to find a TD with min estimated cost?

¢ N
o b

P-hard to minimize width / fill-in
euristic recipe:

1. Generate a large pool of "good” TDs

2. Compute the cost of each
3. Choose the one with the best cost

Need an algorithm to enumerate TDs!



= |ntroduction

= Cligues in Inconsistent Databases

= Cliques in Query Planning
>« Caching in Trie Join
* Enumerating Tree Decompositions

« Ranked Enumeration




Not Just for Database Queries!

e 1D apps can benefit from specialized measures

— Games (computation of Nash equilibria [Gottlob+ 05])

— Bioinformatics (prediction of RNA structures [Zhao+ 06))
— Weighted model counting [Li+ 08]

— (Constraint-satisfaction problems [Kolaitis,Vardi O0]

— Probabilistic graphical models [Lauritzen,Spiegelhalter 88] and
knowledge compilation
= Otero-Mediero & Dechter [2017] select AND-OR trees for BN:
— TDs — “pseudo trees” — AND/OR trees
— Score: F(td-width, pseudo-tree-height)
— Used the algorithm presented next

e ML applied to learn TD scores (over TD features)
from problem instances [Abseher+ 15]



Solutions?

e (Generator of [Abseher+ 15] (ML)
— Generate a handful (10)
— Best-effort randomness, no guarantees

e Duncecap [Tu,Ré 15]: candidate generator of generalized
hypertree decompositions
— Goal: join optimization
— No efficiency guarantees, designed for small query graphs

100

10 Random graphs

#time (avg over 100)

(sec)

0.1 ———— e O O——O————O——

34 5 6 7 8 91011121314151617181920
#nodes




Task: enumerate(allTDs of a graph
« Complexity guarantees
» Effective practical performance



Which TDs to Generate?

Better TD
| ./A Even better TD
G )
&
"
\. J/
G' x)
—

Proper tree decomposition: cannot be
improved by removing or splitting bags



Task: enumerate all proper TDs of a graph
« Complexity guarantees
» Effective practical solution



THEOREM [Carmeli,Kenig,K PODS’17]

Can enumerate in incremental poly. time:
1. All proper TDs
2. All minimal triangulations

Wait — related to this talk?



(1) From Proper TDs to Min Triangs

PROPOSITION: efficient translation between classes of bag-
equivalent

poroper TDs & minimal triangulations

%,

ﬁ;‘“fé&%fﬂ

Every >3 cycle
has a chord 4 m(

. o

Efficient: <n max cliques [Gavril 74]; reduce to max spanning trees over
max cliques [Jordan 02]; enum max spanning trees [Yamada+ 10]



(2) From Min Triangs to Min Separators

A bijection [Parra,Scheffler 971:
min triangs & max sets of non-crossing min separators

j o [
» g =L -
™A

Non-crossing: not separating nodes of the other
(symmetric [Kloks,Kratsch 97])



DEFINITION: Minimal Separator of a Graph G
A set S of nodes is a:

* (u,v)-separator if u is not reachable from v in G-S
* minimal (u,v)-sep. if no subset of S is a (u,v)-sep.
* A minimal separator if it is a min (u,v)-sep. for some (u,v)

S S

A

u

7N
x4




Solution?

Given a graph G:
1. Build the grapk@min—seps as nodes; edge = NON-Cross

2. Enumerate the max cligues of F w/ poly. delay

F l'
) | A
[ Problem: F can be } :ﬂ‘

exp. larger than G!

- Challenge: Enumerate

=N = the max cliques of F
o0

. without generating F!




Enumeration Algorithm

e Enumerates the max cligues over a Succinct
Graph Representation (SGR)

e SGR accessed indirectly (via algs), assuming:
1. Nodes can be enumerated with poly. delay
2. Edges can be verified in poly. time
3. Cligues maximized in poly. time

e Redesign of our algorithm for hereditary graph
properties [Cohen,K,Sagiv 08]



SGR Assumptions in Our Case

1. Nodes can be
enumerated with
poly. delay

2. Edges verified in
poly. time

3. Cligues maximized
In poly. time

[Berry+ 99]. Generating all
min seps; we show how to
make it poly. delay

Straightforward
(edge = crossing min seps)

Using [Heggernes 06], via
any triangulation
algorithm



Quality on PIC2011 (30 min)

1 avg avg : avg max
vE EASHTE s results H<first o0 Yoimprov  %eimprov
width 12733.4 | 20.2 2.6% 26.3%
MCS-M 33635.0
fill-in 12724.9 | 2043.8 | 14.4% 55.8%
width 4744 1 18.5 3.4% 20.7%
LB-T 11998.3
fill-in 1013.6 | 965.8 2.2% 27.6%
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The Case of Poly #Min-Separators

e (General case: Inc. poly. time

e |f #min-separators bounded by a polynomial:
— Min triangs enumerated with poly. delay

— A min width/fill-in triangulation can be found in
poly. time [Bouchitté, Todinca 01]

® /S poly-#min-seps a realistic assumption?

G FA/..
ﬁ" 2
/@



Hardness Distribution

Terminated in T min? ® Yes ® No

Pace2016-100
promedas
ObjectDetection
DBN
Segmentation
CSP

grids
ProteinFolding
ImageAlignment
Pace2016-1000
ProteinProtein
DBPedia
pedigree
alchemy

B RN N

N
o

40

60 80 100

m Terminated = Not terminated

120

140

160

180

200



Observed # Minimal Separators 299

2-0-1-1
100000
10000 . e Obj-detect Markov net
. DBN
#min- 1000 A
seps . ¢ og0 ® promedas
.". LX) o
100 T "o S e CSP
. s -
S e ‘. ® Alchemy
10 O: ‘ 0: [ J
1 ° °
1 10 100 1000 10000 100000 1000000

#edges



The Case of Poly #Min-Separators

e (General case: Inc. poly. time

e |f #min-separators bounded by a polynomial:
— Min triangs enumerated with poly. delay

— A min width/fill-in triangulation can be found in
poly. time [Bouchitté, Todinca 01]

® /S poly-#min-seps a realistic assumption?
e Can we get ranked enumeration?

G FA/..
ﬁ" 2
/@



THEOREM [Ravid,Medini,K PODS’19]

If #min-separators < poly(G), then min triangs
(and proper TDs) can be enumerated with:

* polynomial delay
* Increasing cost
for any “monotonic” cost function (inc. width, fill).

For every fixed w, min triangs (& proper TDs) of width <w
can be enumerated w/ poly. delay and increasing cost.




Monotonic Cost Function

3

e
\z
|
-
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Conclusions

e Clique enumeration is an important, cross-field tool for
computing, particularly data analysis

e |ively community, frequent progress (practice & theory)

e Discussed manifestations in DB theory & practice
— Reasoning about database inconsistency
— Query planning

¢ [avorite directions:
— Highly parallel architectures [Schmidt+ 09] [Jenkins+ 11]

— Discrimination: Which scoring functions allow for an
efficient ranked enumeration of maximal cliques?
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