
Some Clique Enumerations
in Database Management

Benny Kimelfeld
Technion Data & Knowledge Lab

tdk.net.technion.ac.il



Enumerating Graph Cliques

• Many apps of (max) clique enumeration
– Genome-data analysis [Harley+ 01]

– Protein-data analysis [Mohseni-Zadeh+ 04]

– Frequent pattern mining [Koch 01]

– Sensor-network management [Biswas+ 13]

– Financial analysis [Boginski+ 05]

– Social network analysis [Wasserman,Faust 94] [Palla+ 05]
[Yan,Gregory 09]

• Long continuum of research on algorithms
– [Bron,Kerbosch 73]  [Johnson+ 88]  [Makino,Uno 04]       

[Tomita+ 06]  [Conte+ 16/17] …

• MCs enumerable w/ poly delay, linear space



Sometimes almost Cliques

• Maximal cliques often overly restrictive
– Not all pairs are friends, missing links, …

• Relaxations proposed; e.g., k-plex [Seidman,Foster 78]

– Def: clique, but each v may miss k	edges

– Studied in social-network analysis 
[Pattillo 11,13]  [Balasundaram+ 11]

– Poly delay for every fixed k [Berlowitz,Cohen,K 15]

– Incremental FPT & “Intractable” if k is input ; reduce 
from hypergraph-transversals (long-standing open)
[Eiter,Gottlob 95,03,13]  [Khachiyan+ 06]

– Development in scalable algorithms [Conte+ 17,18]



Illustration on 9/11 NetworkMapping Networks of Terrorist Cells  / Krebs50

Figure 4. Hijacker’s Network Neighborhood

This dense under-layer of prior trusted relationships made the hijacker network both stealth and
resilient.  Although we don’t know all of the internal ties of the hijackers’ network it appears that many
of the ties were concentrated around the pilots.  This is a risky move for a covert network.  Concen-
trating both unique skills and connectivity in the same nodes makes the network easier to disrupt –
once it is discovered.  Peter Klerks (Klerks 2001) makes an excellent argument for targeting those nodes
in the network that have unique skills. By removing those necessary skills from the project, we can
inflict maximum damage to the project mission and goals.  It is possible that those with unique skills
would also have unique ties within the network. Because of their unique human capital and their high
social capital the pilots were the richest targets for removal from the network.  Unfortunately they were
not discovered in time.

Krebs, V.: Mapping networks of terrorist cells 
Connections 24, 45–52 (2002)

Mohamad Atta  
participates in a 
single clique of 

size > 3

Mohamad Atta 
participates in 

36/51 2-plexes 
of size > 3 
(more than 

anyone else)

Mohamad Atta  
participates in all 
18 3-plexes of 

size > 5 
(2nd best: 14)

Mohamad Atta   
in 343/621
3-plexes

(2nd best: 199)

k-plex: each 
v may miss 
k	edges



This Talk

2 apps of clique enumeration & counting in 
database management:

§ Reasoning about inconsistency

§ Query planning



Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning



Inconsistency in the DBpedia KB

Cullen Douglas 

dbo:birthPlace

§ dbr:California
§ dbr:Florida

Marion Jones 

dbo:height

§ 1.524
§ 1.778

Irene Tedrow

dbo:deathPlace

§ dbr:California
§ dbr:Hollywood,_Los_Angeles

§ dbr:New_York_City

dbo:parent

Melinda SaxeDavid Saxe

dbo:parent

dbo:birthYeardbo:birthYear
19651969



Sources of Inconsistent Data

• Imprecise data sources
– Crowd, Web pages, social encyclopedias, sensors, …

• Imprecise data generation
– ETL, natural-language processing, sensor/signal 

processing, image recognition, …

• Conflicts in data integration
– Crowd + enterprise data + KB + Web + ...

• Data staleness
– Entities change address, status, ...

• And so on ...



• Several principled approaches proposed for 
reasoning about inconsistent data

• Concepts in declarative approaches 
– Integrity constraints 

§ Or dependencies

– Inconsistent database
§ Violates the constraints

– Edit operations
§ Delete/insert tuple, update an attribute

– Repairs
§ Consistent DB following a legitimate edit

• Theoretical formulation [Arenas,Bertossi,Chomicki 99]

Principled Declarative Approaches



Examples of Integrity Constraints

• Key constraints
– Person(ssn,name,birthCity,birthState)

• Functional Dependencies (FDs)
– birthCity⟶ birthState

• Conditional FDs
– birthCity⟶ birthStatewhenever country=“USA”

• Denial constraints
– not[ Parent(x,y)	&	Parent(y,x)	]

• Referential (foreign-key) constraints
– Parent(x,y)	⟶ Person(x)	&	Person(y)

• …



Example: Inconsistent Database

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

birthCity⟶	birthState
person	⟶	birthCity



person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

Set-minimal
(for deletion)

Cardinality-minimal
(for deletion)

Subset 
Repairs

Update 
Repairs

birthCity⟶	birthState

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person	⟶	birthCity

Set-minimal
(for attribute update)

person birthCity birthState
Douglas Miami CA
Douglas Miami CA
Tedrow LA NYC
Tedrow LA NYC
Jones LA NYC

person birthCity birthState
Douglas Miami FL
Douglas Miami FL
Tedrow LA CA
Tedrow LA CA
Jones LA CA

Cardinality-minimal
(for attribute update)



• Repairing / Cleaning
– Compute a (good/best) repair 
– [Bertossi+ 08]  [Kolahi,Lakshmanan 09]  [Livshits,K,Roy 18]

• Consistent Query Answering (CQA)
– Which query answers are not affected by inconsistency?

– Formally, find the tuples that belong to Q(J) for all repairs J
– [Arenas+ 99]  [Fuxman,Miller 05]  [Koutris,Wijsen 17]

• Repair checking
– Given I and J, is J a repair of I? ; typically a complexity tool
– [Afrati,Kolaitis 09]  [Chomicki,Marcinkowski 05]

• Repair counting (+enumeration)
– Measure consistency of query answers [Maslowski,Wijsen 14] 
– Measure inconsistency [Livshits,K 17] ; also studied in the KR 

community [DeBona,Grant,Hunter,Konieczny AAAI18]

Reasoning about Database Inconsistency 



Key Functional Referential Conditional 
FunctionalConstraints

Operations

Tuple 
delete

Tuple 
insert

Attribute 
update

Repairs

Set 
minimal

Cardinality 
minimal

Problem
Cleaning Repair 

CountingCQARepair 
Checking



Key Functional Referential Conditional 
FunctionalConstraints

Operations

Tuple 
delete

Attribute 
update

Repairs

Cardinality 
minimal

Problem
Cleaning CQARepair 

Checking
Repair 

Counting

Douglas LA CA

Tedrow LA NYC

Douglas Miami FL

edge = consistent

Tuple 
insert

“consistency graph”

Set 
minimal



Key Functional Referential Conditional 
FunctionalConstraints

Operations

Tuple 
delete

Attribute 
update

Repairs

Cardinality 
minimal

Problem
Cleaning CQARepair 

Checking
Repair 

Counting

Max Clique

Tuple 
insert

Set 
minimal



Key Functional Referential Conditional 
FunctionalConstraints

Operations

Tuple 
delete

Attribute 
update

Repairs

Cardinality 
minimal

Problem
Cleaning CQARepair 

Checking
Repair 

Counting

Reasoning 
about max 

cliques

Tuple 
insert

Set 
minimal



Key Functional Referential Conditional 
FunctionalConstraints

Operations

Tuple 
delete

Attribute 
update

Repairs

Cardinality 
minimal

Problem
Cleaning CQARepair 

Checking
Repair 

Counting

#max 
cliques 

Tuple 
insert

Set 
minimal



Counting Set-Minimal Repairs

• Counting the maximal cliques of a graph is #P-complete
[Provan,Ball 83], inapproximable [Håstad 96]

• Special tractable cases, e.g., P4-free graphs
– P4-free graph (a.k.a. cograph): no induced path of length 4

• What about the consistency graphs?

Not P4-free

P4-free

THEOREM [Livshits,K PODS’17]
Equivalent for every fixed set of FDs: 

1. Repairs can be counted in poly time
2. Every consistency graph is P4-free

Moreover, testable in poly time (given FDs)

* Assuming P≠#P



ssn ⟶ city 

city ⟶ state

ssn ⟶ name

ssn country ⟶ license#

faculty ⟶ dean 

faculty ⟶ dean

building ⟶ address 

faculty ⟶ dean 

faculty professor ⟶ room#

ssn ⟶ uID

uID ⟶ email

email ⟶ ssn

Hard (to approx) Poly time



Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning



Join Query

Friends(x1,y1)	,	School(x1,s)	,	School(y1,s)
Friend from the same high school

Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u)
Colleague from the same university

Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c)
Spouse with a common child

Artist	(x)
Artist

Same(a,b)
Artist(x),
Friends(x1,y1) , School(x1,s) , School(y1,s),
Colleagues(x2,y2) , Univ(x2,u) , Univ(y2,u),
Married(x3,y3) , Parent(x3,c) , Parent(y3,c),
Same(x,x1) , Same(x,x2) , Same(x,x3)

Same x:

R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)



Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration



Join Algorithms

• Classic algorithms select a join ordering with 
“easier” intermediate joins [Selinger+ 79]

• Yannakakis [1981] for acyclic queries 
– And cyclic queries with low hypertree width

• New breed of joiners: worst-case optimal
– [Ngo,Porat,Ré,Rudra 12]

– Meet the Atserias-Grohe-Marx [2008] bound 

§ Example: R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)	— n2 vs n1.5
– In-memory, scan all relations simultaneously  
– NPRR [2012], Leapfrog Trie Join [Veldhuizen 14], Minesweeper 

[Ngo+ 14], DunceCap [Tu,Ré 15], ...



Figure 6: Duration of 3-clique on LiveJournal subset of N edges

Figure 7: Duration of 4-clique on LiveJournal subset of N edges

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)
on LiveJournal

Join Processing for Graph Patterns: 
An Old Dog with New Tricks [Nguyen+ 15] 

LFTJ



Leapfrog Trie Join (LFTJ) [Veldhuizen 14]

• Variant of variable elimination

• Relations in trie structures
– Level = attribute / variable

– Tuple = root-to-leaf path

• Multiple trie pointers aligned using a leap-frog 
(jump competition) scan; backtracking

Univ(y,u)
A U
B U
B V
C S

Married(x,y)
A B
B C
C D
C E y

x A B C

U U V S

y

u

A B C

B C D E

1 2

2 3

(A,B,U) (A,B,V) (B,C,S)

No memory used 
beyond tries



Caching in LFTJ  [Kalinsky,Etsion,K 17]

x1

x2 x3
x

y1

y2

u

s

y3

c

x1

y1 s

x2
y2

u x3
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x1
x
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decomposition 
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Artist(x),
Friends(x1,y1)	,	School(x1,s)	,	School(y1,s),
Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u),
Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c),
Same(x,x1)	,	Same(x,x2)	,	Same(x,x3)	



Caching in LFTJ  [Kalinsky,Etsion,K 17]

x1

y1 s

x2
y2

u x3
y3

c

x1
x

x2 x x x3

1 2
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445
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2 s
3 x1
4 x
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6 u
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In [Kalinsky,Etsion,K 17]:

• Caching policies

• TD selection

• Extension to count(join)

• Caching (unlike LFTJ)

• Flexible caching (unlike ord. TD)

H



Experimental Evaluation
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TD Selection Matters!
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Tree Decomposition (TD)

Each edge contained 
in some box (bag)

Tree

Each node 
induces a 
connected 

subtree

Graph G

Definition: Tree Decomposition (TD) of a Graph G
(t,β), t a tree, β a mapping nodes(t)⟶2nodes(G) where:

1. For all e∈edges(G) there is u∈nodes(t) s.t. e⊆β(u)
2. For all v∈nodes(G), the set {u∈nodes(t) | v∈β(u)}

induces a connected subtree of t



Standard Goodness Measures

TD width: max(|bag|)-1
TD fill-in: #new edges needed to connect bag neighbors

width=2 fill-in=4

Definition: Tree Decomposition (TD) of a Graph G
(t,β), t a tree, β a mapping nodes(t)⟶2nodes(G) where:

1. For all e∈edges(G) there is u∈nodes(t) s.t. e⊆β(u)
2. For all v∈nodes(G), the set {u∈nodes(t) | v∈β(u)}

induces a connected subtree of t



Running Example: Width/Fill-in 

x1

x2 x3
x

y1

y2

u

s

y3

c

x1

y1 s

x2
y2

u x3
y3

c

x1
x

x2 x x x3

Artist(x),
Friends(x1,y1)	,	School(x1,s)	,	School(y1,s),
Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u),
Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c),
Same(x,x1)	,	Same(x,x2)	,	Same(x,x3)	

width=2
fill-in=0

chordal /
triangulated



Goodness Criteria in Cached LFTJ

• Cardinality of adhesions (intersections)
– This is the dimension of our caches
– Smaller = better

• Width, #bags (#caches)
– Smaller width = better;  higher #bags = better

• Skew
– How effective are the caches?
– Note: Data (not just query) property
– Known effectiveness estimators for variable orderings 

[Chu,Balazinska,Suciu 15]

[Kalinsky,Etsion,K 17]



Finding a Good TD (Query Planning)

• How to find a TD with min estimated cost?

• NP-hard to minimize width / fill-in

• Heuristic recipe:
1. Generate a large pool of ”good” TDs
2. Compute the cost of each
3. Choose the one with the best cost

Need an algorithm to enumerate TDs!



Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration



Not Just for Database Queries! 

• TD apps can benefit from specialized measures
– Games (computation of Nash equilibria  [Gottlob+ 05])
– Bioinformatics (prediction of RNA structures [Zhao+ 06])
– Weighted model counting [Li+ 08]
– Constraint-satisfaction problems [Kolaitis,Vardi 00] 
– Probabilistic graphical models [Lauritzen,Spiegelhalter 88] and 

knowledge compilation
§ Otero-Mediero & Dechter [2017] select AND-OR trees for BN:

– TDs ⟶ “pseudo trees” ⟶ AND/OR trees
– Score: F(td-width,	pseudo-tree-height)
– Used the algorithm presented next

– ...

• ML applied to learn TD scores (over TD features) 
from problem instances [Abseher+ 15]



Solutions?
• Generator of [Abseher+ 15] (ML)

– Generate a handful (10) 

– Best-effort randomness, no guarantees

• Duncecap [Tu,Ré 15]: candidate generator of generalized 
hypertree decompositions
– Goal: join optimization

– No efficiency guarantees, designed for small query graphs

0.1

1

10

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#nodes

#time 
(sec)

Random graphs 
(avg over 100)



Task: enumerate all TDs of a graph

• Complexity guarantees

• Effective practical performance

?



Which TDs to Generate?

G
Even better TDTD

Better TD

Proper tree decomposition: cannot be 
improved by removing or splitting bags

G'



Task: enumerate all proper TDs of a graph

• Complexity guarantees

• Effective practical solution



THEOREM [Carmeli,Kenig,K PODS’17]
Can enumerate in incremental poly. time:

1. All proper TDs

2. All minimal triangulations

Wait – related to this talk?



(1) From Proper TDs to Min Triangs

Every >3 cycle 
has a chord

PROPOSITION: efficient translation between classes of bag-
equivalent proper TDs ⇔ minimal triangulations

Efficient: ⩽n max cliques [Gavril 74]; reduce to max spanning trees over 
max cliques [Jordan 02]; enum max spanning trees [Yamada+ 10]



(2) From Min Triangs to Min Separators

A bijection [Parra,Scheffler 97]: 

min triangs ⇔ max sets of non-crossing min separators

Non-crossing: not separating nodes of the other
(symmetric [Kloks,Kratsch 97])



DEFINITION: Minimal Separator of a Graph G
A set S of nodes is a:

• (u,v)-separator if u is not reachable from v in G-S
• minimal (u,v)-sep. if no subset of S is a (u,v)-sep.

• A minimal separator if it is a min (u,v)-sep. for some (u,v)

u

v

S

v

S
u



Solution?
Given a graph G:

1. Build the graph F: min-seps as nodes; edge = non-cross

2. Enumerate the max cliques of F w/ poly. delay 

Problem: F can be 
exp. larger than G!

G F

…
Challenge: Enumerate 
the max cliques of F

… without generating F!



Enumeration Algorithm

• Enumerates the max cliques over a Succinct 
Graph Representation (SGR)

• SGR accessed indirectly (via algs), assuming:

1. Nodes can be enumerated with poly. delay

2. Edges can be verified in poly. time

3. Cliques maximized in poly. time

• Redesign of our algorithm for hereditary graph 
properties [Cohen,K,Sagiv 08]



SGR Assumptions in Our Case

1. Nodes can be 
enumerated with 
poly. delay

2. Edges verified in 
poly. time

3. Cliques maximized 
in poly. time

[Berry+ 99]: Generating all 
min seps; we show how to 
make it poly. delay

Straightforward 
(edge = crossing min seps)

Using [Heggernes 06], via
any triangulation 
algorithm



Quality on PIC2011 (30 min)

alg. measure avg
#results

avg
#≤first avg min avg

%improv
max 

%improv

MCS-M
width

33635.0
12733.4 20.2 2.6% 26.3%

fill-in 12724.9 2043.8 14.4% 55.8%

LB-T
width

11998.3
4744.1 18.5 3.4% 20.7%

fill-in 1013.6 965.8 2.2% 27.6%
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• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration



The Case of Poly #Min-Separators

• General case: inc. poly. time

• If #min-separators bounded by a polynomial:

– Min triangs enumerated with poly. delay

– A min width/fill-in triangulation can be found in 
poly. time [Bouchitté,Todinca 01]

• Is poly-#min-seps a realistic assumption?

G F



Hardness Distribution
Terminated in 1 min? Yes No

0 20 40 60 80 100 120 140 160 180 200
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Terminated Not terminated



Observed # Minimal Separators
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The Case of Poly #Min-Separators

• General case: inc. poly. time

• If #min-separators bounded by a polynomial:

– Min triangs enumerated with poly. delay

– A min width/fill-in triangulation can be found in 
poly. time [Bouchitté,Todinca 01]

• Is poly-#min-seps a realistic assumption?

• Can we get ranked enumeration?

G F



THEOREM [Ravid,Medini,K PODS’19]
If #min-separators < poly(G), then min triangs
(and proper TDs) can be enumerated with:

• polynomial delay
• increasing cost

for any “monotonic” cost function (inc. width, fill).

For every fixed w, min triangs (& proper TDs) of width <w
can be enumerated w/ poly. delay and increasing cost.



Monotonic Cost Function



Conclusions

• Clique enumeration is an important, cross-field tool for 
computing, particularly data analysis

• Lively community, frequent progress (practice & theory) 

• Discussed manifestations in DB theory & practice
– Reasoning about database inconsistency 
– Query planning

• Favorite directions:
– Highly parallel architectures [Schmidt+ 09]  [Jenkins+ 11]

– Discrimination:  Which scoring functions allow for an 
efficient ranked enumeration of maximal cliques?



Batya Kenig Nofar Carmeli Oren Kalinsky

Noam RavidDori Medini

Yoav Etsion Ester Livshits


