
Some Clique Enumerations
in Database Management

Benny Kimelfeld
Technion Data & Knowledge Lab

tdk.net.technion.ac.il

Enumerating Graph Cliques

• Many apps of (max) clique enumeration
– Genome-data analysis [Harley+ 01]

– Protein-data analysis [Mohseni-Zadeh+ 04]

– Frequent pattern mining [Koch 01]

– Sensor-network management [Biswas+ 13]

– Financial analysis [Boginski+ 05]

– Social network analysis [Wasserman,Faust 94] [Palla+ 05]
[Yan,Gregory 09]

• Long continuum of research on algorithms
– [Bron,Kerbosch 73] [Johnson+ 88] [Makino,Uno 04]

[Tomita+ 06] [Conte+ 16/17] …

• MCs enumerable w/ poly delay, linear space

Sometimes almost Cliques

• Maximal cliques often overly restrictive
– Not all pairs are friends, missing links, …

• Relaxations proposed; e.g., k-plex [Seidman,Foster 78]

– Def: clique, but each v may miss k	edges

– Studied in social-network analysis
[Pattillo 11,13] [Balasundaram+ 11]

– Poly delay for every fixed k [Berlowitz,Cohen,K 15]

– Incremental FPT & “Intractable” if k is input ; reduce
from hypergraph-transversals (long-standing open)
[Eiter,Gottlob 95,03,13] [Khachiyan+ 06]

– Development in scalable algorithms [Conte+ 17,18]

Illustration on 9/11 NetworkMapping Networks of Terrorist Cells / Krebs50

Figure 4. Hijacker’s Network Neighborhood

This dense under-layer of prior trusted relationships made the hijacker network both stealth and
resilient. Although we don’t know all of the internal ties of the hijackers’ network it appears that many
of the ties were concentrated around the pilots. This is a risky move for a covert network. Concen-
trating both unique skills and connectivity in the same nodes makes the network easier to disrupt –
once it is discovered. Peter Klerks (Klerks 2001) makes an excellent argument for targeting those nodes
in the network that have unique skills. By removing those necessary skills from the project, we can
inflict maximum damage to the project mission and goals. It is possible that those with unique skills
would also have unique ties within the network. Because of their unique human capital and their high
social capital the pilots were the richest targets for removal from the network. Unfortunately they were
not discovered in time.

Krebs, V.: Mapping networks of terrorist cells
Connections 24, 45–52 (2002)

Mohamad Atta
participates in a
single clique of

size > 3

Mohamad Atta
participates in

36/51 2-plexes
of size > 3
(more than

anyone else)

Mohamad Atta
participates in all
18 3-plexes of

size > 5
(2nd best: 14)

Mohamad Atta
in 343/621
3-plexes

(2nd best: 199)

k-plex: each
v may miss
k	edges

This Talk

2 apps of clique enumeration & counting in
database management:

§ Reasoning about inconsistency

§ Query planning

Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

Inconsistency in the DBpedia KB

Cullen Douglas

dbo:birthPlace

§ dbr:California
§ dbr:Florida

Marion Jones

dbo:height

§ 1.524
§ 1.778

Irene Tedrow

dbo:deathPlace

§ dbr:California
§ dbr:Hollywood,_Los_Angeles

§ dbr:New_York_City

dbo:parent

Melinda SaxeDavid Saxe

dbo:parent

dbo:birthYeardbo:birthYear
19651969

Sources of Inconsistent Data

• Imprecise data sources
– Crowd, Web pages, social encyclopedias, sensors, …

• Imprecise data generation
– ETL, natural-language processing, sensor/signal

processing, image recognition, …

• Conflicts in data integration
– Crowd + enterprise data + KB + Web + ...

• Data staleness
– Entities change address, status, ...

• And so on ...

• Several principled approaches proposed for
reasoning about inconsistent data

• Concepts in declarative approaches
– Integrity constraints

§ Or dependencies

– Inconsistent database
§ Violates the constraints

– Edit operations
§ Delete/insert tuple, update an attribute

– Repairs
§ Consistent DB following a legitimate edit

• Theoretical formulation [Arenas,Bertossi,Chomicki 99]

Principled Declarative Approaches

Examples of Integrity Constraints

• Key constraints
– Person(ssn,name,birthCity,birthState)

• Functional Dependencies (FDs)
– birthCity⟶ birthState

• Conditional FDs
– birthCity⟶ birthStatewhenever country=“USA”

• Denial constraints
– not[Parent(x,y)	&	Parent(y,x)]

• Referential (foreign-key) constraints
– Parent(x,y)	⟶ Person(x)	&	Person(y)

• …

Example: Inconsistent Database

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

birthCity⟶	birthState
person	⟶	birthCity

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

Set-minimal
(for deletion)

Cardinality-minimal
(for deletion)

Subset
Repairs

Update
Repairs

birthCity⟶	birthState

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person	⟶	birthCity

Set-minimal
(for attribute update)

person birthCity birthState
Douglas Miami CA
Douglas Miami CA
Tedrow LA NYC
Tedrow LA NYC
Jones LA NYC

person birthCity birthState
Douglas Miami FL
Douglas Miami FL
Tedrow LA CA
Tedrow LA CA
Jones LA CA

Cardinality-minimal
(for attribute update)

• Repairing / Cleaning
– Compute a (good/best) repair
– [Bertossi+ 08] [Kolahi,Lakshmanan 09] [Livshits,K,Roy 18]

• Consistent Query Answering (CQA)
– Which query answers are not affected by inconsistency?

– Formally, find the tuples that belong to Q(J) for all repairs J
– [Arenas+ 99] [Fuxman,Miller 05] [Koutris,Wijsen 17]

• Repair checking
– Given I and J, is J a repair of I? ; typically a complexity tool
– [Afrati,Kolaitis 09] [Chomicki,Marcinkowski 05]

• Repair counting (+enumeration)
– Measure consistency of query answers [Maslowski,Wijsen 14]
– Measure inconsistency [Livshits,K 17] ; also studied in the KR

community [DeBona,Grant,Hunter,Konieczny AAAI18]

Reasoning about Database Inconsistency

Key Functional Referential Conditional
FunctionalConstraints

Operations

Tuple
delete

Tuple
insert

Attribute
update

Repairs

Set
minimal

Cardinality
minimal

Problem
Cleaning Repair

CountingCQARepair
Checking

Key Functional Referential Conditional
FunctionalConstraints

Operations

Tuple
delete

Attribute
update

Repairs

Cardinality
minimal

Problem
Cleaning CQARepair

Checking
Repair

Counting

Douglas LA CA

Tedrow LA NYC

Douglas Miami FL

edge = consistent

Tuple
insert

“consistency graph”

Set
minimal

Key Functional Referential Conditional
FunctionalConstraints

Operations

Tuple
delete

Attribute
update

Repairs

Cardinality
minimal

Problem
Cleaning CQARepair

Checking
Repair

Counting

Max Clique

Tuple
insert

Set
minimal

Key Functional Referential Conditional
FunctionalConstraints

Operations

Tuple
delete

Attribute
update

Repairs

Cardinality
minimal

Problem
Cleaning CQARepair

Checking
Repair

Counting

Reasoning
about max

cliques

Tuple
insert

Set
minimal

Key Functional Referential Conditional
FunctionalConstraints

Operations

Tuple
delete

Attribute
update

Repairs

Cardinality
minimal

Problem
Cleaning CQARepair

Checking
Repair

Counting

#max
cliques

Tuple
insert

Set
minimal

Counting Set-Minimal Repairs

• Counting the maximal cliques of a graph is #P-complete
[Provan,Ball 83], inapproximable [Håstad 96]

• Special tractable cases, e.g., P4-free graphs
– P4-free graph (a.k.a. cograph): no induced path of length 4

• What about the consistency graphs?

Not P4-free

P4-free

THEOREM [Livshits,K PODS’17]
Equivalent for every fixed set of FDs:

1. Repairs can be counted in poly time
2. Every consistency graph is P4-free

Moreover, testable in poly time (given FDs)

* Assuming P≠#P

ssn ⟶ city

city ⟶ state

ssn ⟶ name

ssn country ⟶ license#

faculty ⟶ dean

faculty ⟶ dean

building ⟶ address

faculty ⟶ dean

faculty professor ⟶ room#

ssn ⟶ uID

uID ⟶ email

email ⟶ ssn

Hard (to approx) Poly time

Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

Join Query

Friends(x1,y1)	,	School(x1,s)	,	School(y1,s)
Friend from the same high school

Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u)
Colleague from the same university

Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c)
Spouse with a common child

Artist	(x)
Artist

Same(a,b)
Artist(x),
Friends(x1,y1) , School(x1,s) , School(y1,s),
Colleagues(x2,y2) , Univ(x2,u) , Univ(y2,u),
Married(x3,y3) , Parent(x3,c) , Parent(y3,c),
Same(x,x1) , Same(x,x2) , Same(x,x3)

Same x:

R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)

Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration

Join Algorithms

• Classic algorithms select a join ordering with
“easier” intermediate joins [Selinger+ 79]

• Yannakakis [1981] for acyclic queries
– And cyclic queries with low hypertree width

• New breed of joiners: worst-case optimal
– [Ngo,Porat,Ré,Rudra 12]

– Meet the Atserias-Grohe-Marx [2008] bound

§ Example: R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)	— n2 vs n1.5
– In-memory, scan all relations simultaneously
– NPRR [2012], Leapfrog Trie Join [Veldhuizen 14], Minesweeper

[Ngo+ 14], DunceCap [Tu,Ré 15], ...

Figure 6: Duration of 3-clique on LiveJournal subset of N edges

Figure 7: Duration of 4-clique on LiveJournal subset of N edges

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

R(X,Y)	⨝	S(X,Z)	⨝	T(Y,Z)
on LiveJournal

Join Processing for Graph Patterns:
An Old Dog with New Tricks [Nguyen+ 15]

LFTJ

Leapfrog Trie Join (LFTJ) [Veldhuizen 14]

• Variant of variable elimination

• Relations in trie structures
– Level = attribute / variable

– Tuple = root-to-leaf path

• Multiple trie pointers aligned using a leap-frog
(jump competition) scan; backtracking

Univ(y,u)
A U
B U
B V
C S

Married(x,y)
A B
B C
C D
C E y

x A B C

U U V S

y

u

A B C

B C D E

1 2

2 3

(A,B,U) (A,B,V) (B,C,S)

No memory used
beyond tries

Caching in LFTJ [Kalinsky,Etsion,K 17]

x1

x2 x3
x

y1

y2

u

s

y3

c

x1

y1 s

x2
y2

u x3
y3

c

x1
x

x2 x x x3

Tree
decomposition

1 2

3

3

4

445

5
6

7

8

8 9

10

Artist(x),
Friends(x1,y1)	,	School(x1,s)	,	School(y1,s),
Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u),
Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c),
Same(x,x1)	,	Same(x,x2)	,	Same(x,x3)	

Caching in LFTJ [Kalinsky,Etsion,K 17]

x1

y1 s

x2
y2

u x3
y3

c

x1
x

x2 x x x3

1 2

3

3

4

445

5
6

7

8

8 9

10

1 y1
2 s
3 x1
4 x
5 x2
6 u
7 y2
8 x3
9 y3
10 c

A
B
C
D
E
F
G
H
I
J

. . .

K
L
M
N
O
P
Q
H

I
J

K
L
M
N
E

F
G

I
J

In [Kalinsky,Etsion,K 17]:

• Caching policies

• TD selection

• Extension to count(join)

• Caching (unlike LFTJ)

• Flexible caching (unlike ord. TD)

H

Experimental Evaluation

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

3-path 4-path 5-path 6-path 7-path 4-cycle 5-cycle 6-cycle

R
un

tim
e

(m
s)

Query

Join Evaluation over ca-GrQc

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

3-path 4-path 5-path 6-path 7-path 4-cycle 5-cycle 6-cycle
Query

Join Evaluation over Wiki-Vote

lo
g

lo
g

9x faster than 2nd best 14x faster than LFTJ

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

3-path 4-path 5-path 6-path 7-path 4-cycle 5-cycle 6-cycle
Query

Join Count Aggregation over Wiki-Vote

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

3-path 4-path 5-path 6-path 7-path 4-cycle 5-cycle 6-cycle

R
un

tim
e

(m
s)

Query

Join Count Aggregation over ca-GrQc

lo
g

lo
g 5x faster than 2nd best 500,000x faster than LFTJ

TD Selection Matters!

p2

m1

m2

p1

p3

m1

m2

p1

m3 p2

p2

m1 p1

p2 m2

p1

p2

m1

m2

m1

m2

p1

40 sec4000 sec

p3
m1 p1

p3m2

p1

p3m2
p2

p3
m3 p2

m1 p1
m2

m1
p3 m2

m3

p3 m2

m3 p2
m2

600 sec27000 sec

Movie

Person Movie

Person

Tree Decomposition (TD)

Each edge contained
in some box (bag)

Tree

Each node
induces a
connected

subtree

Graph G

Definition: Tree Decomposition (TD) of a Graph G
(t,β), t a tree, β a mapping nodes(t)⟶2nodes(G) where:

1. For all e∈edges(G) there is u∈nodes(t) s.t. e⊆β(u)
2. For all v∈nodes(G), the set {u∈nodes(t) | v∈β(u)}

induces a connected subtree of t

Standard Goodness Measures

TD width: max(|bag|)-1
TD fill-in: #new edges needed to connect bag neighbors

width=2 fill-in=4

Definition: Tree Decomposition (TD) of a Graph G
(t,β), t a tree, β a mapping nodes(t)⟶2nodes(G) where:

1. For all e∈edges(G) there is u∈nodes(t) s.t. e⊆β(u)
2. For all v∈nodes(G), the set {u∈nodes(t) | v∈β(u)}

induces a connected subtree of t

Running Example: Width/Fill-in

x1

x2 x3
x

y1

y2

u

s

y3

c

x1

y1 s

x2
y2

u x3
y3

c

x1
x

x2 x x x3

Artist(x),
Friends(x1,y1)	,	School(x1,s)	,	School(y1,s),
Colleagues(x2,y2)	,	Univ(x2,u)	,	Univ(y2,u),
Married(x3,y3)	,	Parent(x3,c)	,	Parent(y3,c),
Same(x,x1)	,	Same(x,x2)	,	Same(x,x3)	

width=2
fill-in=0

chordal /
triangulated

Goodness Criteria in Cached LFTJ

• Cardinality of adhesions (intersections)
– This is the dimension of our caches
– Smaller = better

• Width, #bags (#caches)
– Smaller width = better; higher #bags = better

• Skew
– How effective are the caches?
– Note: Data (not just query) property
– Known effectiveness estimators for variable orderings

[Chu,Balazinska,Suciu 15]

[Kalinsky,Etsion,K 17]

Finding a Good TD (Query Planning)

• How to find a TD with min estimated cost?

• NP-hard to minimize width / fill-in

• Heuristic recipe:
1. Generate a large pool of ”good” TDs
2. Compute the cost of each
3. Choose the one with the best cost

Need an algorithm to enumerate TDs!

Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration

Not Just for Database Queries!

• TD apps can benefit from specialized measures
– Games (computation of Nash equilibria [Gottlob+ 05])
– Bioinformatics (prediction of RNA structures [Zhao+ 06])
– Weighted model counting [Li+ 08]
– Constraint-satisfaction problems [Kolaitis,Vardi 00]
– Probabilistic graphical models [Lauritzen,Spiegelhalter 88] and

knowledge compilation
§ Otero-Mediero & Dechter [2017] select AND-OR trees for BN:

– TDs ⟶ “pseudo trees” ⟶ AND/OR trees
– Score: F(td-width,	pseudo-tree-height)
– Used the algorithm presented next

– ...

• ML applied to learn TD scores (over TD features)
from problem instances [Abseher+ 15]

Solutions?
• Generator of [Abseher+ 15] (ML)

– Generate a handful (10)

– Best-effort randomness, no guarantees

• Duncecap [Tu,Ré 15]: candidate generator of generalized
hypertree decompositions
– Goal: join optimization

– No efficiency guarantees, designed for small query graphs

0.1

1

10

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#nodes

#time
(sec)

Random graphs
(avg over 100)

Task: enumerate all TDs of a graph

• Complexity guarantees

• Effective practical performance

?

Which TDs to Generate?

G
Even better TDTD

Better TD

Proper tree decomposition: cannot be
improved by removing or splitting bags

G'

Task: enumerate all proper TDs of a graph

• Complexity guarantees

• Effective practical solution

THEOREM [Carmeli,Kenig,K PODS’17]
Can enumerate in incremental poly. time:

1. All proper TDs

2. All minimal triangulations

Wait – related to this talk?

(1) From Proper TDs to Min Triangs

Every >3 cycle
has a chord

PROPOSITION: efficient translation between classes of bag-
equivalent proper TDs ⇔ minimal triangulations

Efficient: ⩽n max cliques [Gavril 74]; reduce to max spanning trees over
max cliques [Jordan 02]; enum max spanning trees [Yamada+ 10]

(2) From Min Triangs to Min Separators

A bijection [Parra,Scheffler 97]:

min triangs ⇔ max sets of non-crossing min separators

Non-crossing: not separating nodes of the other
(symmetric [Kloks,Kratsch 97])

DEFINITION: Minimal Separator of a Graph G
A set S of nodes is a:

• (u,v)-separator if u is not reachable from v in G-S
• minimal (u,v)-sep. if no subset of S is a (u,v)-sep.

• A minimal separator if it is a min (u,v)-sep. for some (u,v)

u

v

S

v

S
u

Solution?
Given a graph G:

1. Build the graph F: min-seps as nodes; edge = non-cross

2. Enumerate the max cliques of F w/ poly. delay

Problem: F can be
exp. larger than G!

G F

…
Challenge: Enumerate
the max cliques of F

… without generating F!

Enumeration Algorithm

• Enumerates the max cliques over a Succinct
Graph Representation (SGR)

• SGR accessed indirectly (via algs), assuming:

1. Nodes can be enumerated with poly. delay

2. Edges can be verified in poly. time

3. Cliques maximized in poly. time

• Redesign of our algorithm for hereditary graph
properties [Cohen,K,Sagiv 08]

SGR Assumptions in Our Case

1. Nodes can be
enumerated with
poly. delay

2. Edges verified in
poly. time

3. Cliques maximized
in poly. time

[Berry+ 99]: Generating all
min seps; we show how to
make it poly. delay

Straightforward
(edge = crossing min seps)

Using [Heggernes 06], via
any triangulation
algorithm

Quality on PIC2011 (30 min)

alg. measure avg
#results

avg
#≤first avg min avg

%improv
max

%improv

MCS-M
width

33635.0
12733.4 20.2 2.6% 26.3%

fill-in 12724.9 2043.8 14.4% 55.8%

LB-T
width

11998.3
4744.1 18.5 3.4% 20.7%

fill-in 1013.6 965.8 2.2% 27.6%

Outline
§ Introduction

§ Cliques in Inconsistent Databases

§ Cliques in Query Planning

• Caching in Trie Join

• Enumerating Tree Decompositions

• Ranked Enumeration

The Case of Poly #Min-Separators

• General case: inc. poly. time

• If #min-separators bounded by a polynomial:

– Min triangs enumerated with poly. delay

– A min width/fill-in triangulation can be found in
poly. time [Bouchitté,Todinca 01]

• Is poly-#min-seps a realistic assumption?

G F

Hardness Distribution
Terminated in 1 min? Yes No

0 20 40 60 80 100 120 140 160 180 200

alchemy
pedigree
DBPedia

ProteinProtein
Pace2016-1000
ImageAlignment

ProteinFolding
grids
CSP

Segmentation
DBN

ObjectDetection
promedas

Pace2016-100

Terminated Not terminated

Observed # Minimal Separators

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

#edges

#min-
seps promedas

obj-detect Markov net

DBN

CSP

Alchemy

The Case of Poly #Min-Separators

• General case: inc. poly. time

• If #min-separators bounded by a polynomial:

– Min triangs enumerated with poly. delay

– A min width/fill-in triangulation can be found in
poly. time [Bouchitté,Todinca 01]

• Is poly-#min-seps a realistic assumption?

• Can we get ranked enumeration?

G F

THEOREM [Ravid,Medini,K PODS’19]
If #min-separators < poly(G), then min triangs
(and proper TDs) can be enumerated with:

• polynomial delay
• increasing cost

for any “monotonic” cost function (inc. width, fill).

For every fixed w, min triangs (& proper TDs) of width <w
can be enumerated w/ poly. delay and increasing cost.

Monotonic Cost Function

Conclusions

• Clique enumeration is an important, cross-field tool for
computing, particularly data analysis

• Lively community, frequent progress (practice & theory)

• Discussed manifestations in DB theory & practice
– Reasoning about database inconsistency
– Query planning

• Favorite directions:
– Highly parallel architectures [Schmidt+ 09] [Jenkins+ 11]

– Discrimination: Which scoring functions allow for an
efficient ranked enumeration of maximal cliques?

Batya Kenig Nofar Carmeli Oren Kalinsky

Noam RavidDori Medini

Yoav Etsion Ester Livshits

